AE. 13A – Conservation de l'énergie mécanique

On étudie la chute d'un objet dans deux milieux différents : l'air puis l'huile. Le but de cette étude est d'interpréter les évolutions des énergies au cours du temps.

Document a : Diverses formes d'énergie

- L'énergie cinétique E_C (en Joule) d'un solide de masse m (en kg) se déplaçant à la vitesse de valeur v (en m.s⁻¹) dans le référentiel terrestre est définie par : $E_C = \frac{1}{2} \times m \times v^2$
- L'énergie potentielle de pesanteur E_P (en Joule) d'un système de masse m (en kg) situé à l'altitude y (en mètre) est donné par la relation : $E_P = m \times g \times y$ avec $g = 9.81 \, N. \, kg^{-1}$
- L'énergie mécanique E_M (en Joule) d'un système est définie par : $E_M = E_C + E_P$

Document b : Vitesse instantanée

On considère qu'à une image donnée, la vitesse du point représentant l'objet est sa vitesse moyenne entre sa position sur l'image précédente et sa position sur l'image suivante. Soit y_1 l'altitude du point 1 et y_3 l'altitude du point 3, la valeur de la vitesse au point 2 est donnée par $v_2 = \frac{y_3 - y_1}{t_3 - t_1}$

Pour un temps quelconque t_i on a donc l'expression $v_i =$

I/ CHUTE D'UN OBJET DANS L'AIR

Document 1 : Matériel

- ullet une vidéo intitulée « chute_air » dont la masse de la balle de squash vaut m=24~g
- un logiciel de pointage avec une notice simplifiée (Aviméca) ;
- un tableur-grapheur avec une notice simplifiée (Regressi).

Document 2 : Protocole de pointage vidéo

- ① Dans le logiciel de pointage, après avoir choisi pour origine l'image n°29 et défini l'échelle, pointer le centre de la balle sur chaque image (voir notice).
- ② Exporter les valeurs pointées afin de les exploiter dans le tableur-grapheur (voir notice).

Mettre en œuvre le protocole et répondre aux questions suivantes :

- 1/ En utilisant les fonctionnalités de Regressi, ajouter et calculer pour chaque image les grandeurs suivantes :
 - a/ la norme v de la vitesse instantanée de la balle (doc. b);
 - **b/** l'énergie cinétique E_c de la balle (doc. a) ;
 - **c**/ l'énergie potentielle de pesanteur E_P de la balle (doc. a) ;
 - **d/** l'énergie mécanique E_M de la balle (doc. a).
- **2**/ Sur un même graphique, tracer $E_c = f(t)$, $E_P = f(t)$ et $E_M = f(t)$.
- 3/ Décrire les évolutions des énergies du système étudié.
- 4/ En déduire la conservation ou la non conservation de l'énergie mécanique. Justifier.
- 5/ Quelle est l'unique force qui s'applique sur la balle ? Justifier. Faire un schéma de la situation.

II/ CHUTE D'UN OBJET DANS L'HUILE

Document 1 : Matériel

- ullet une vidéo intitulée « chute_huile » dont la masse de la bille d'acier vaut $m=2,2\ g$
- un logiciel de pointage avec une notice simplifiée (Aviméca) ;
- un tableur-grapheur avec une notice simplifiée (Regressi).

Document 2 : Protocole de pointage vidéo

- ① Dans le logiciel de pointage, après avoir choisi pour origine l'image n°23 et défini l'échelle, pointer le centre de la bille sur chaque image (voir notice).
- ② Exporter les valeurs pointées afin de les exploiter dans le tableur-grapheur (voir notice).

Mettre en œuvre le protocole et répondre aux questions suivantes :

- 1/ En utilisant les fonctionnalités de Regressi, ajouter et calculer pour chaque image les grandeurs suivantes :
 - **a**/ la norme v de la vitesse instantanée de la bille (doc. b);
 - **b**/ l'énergie cinétique E_c de la bille (doc. a) ;
 - **c**/ l'énergie potentielle de pesanteur E_P de la bille (doc. a) ;
 - **d/** l'énergie mécanique E_M de la bille (doc. a).
- **2**/ Sur un même graphique, tracer $E_c = f(t)$, $E_P = f(t)$ et $E_M = f(t)$.
- 3/ Décrire les évolutions des énergies du système étudié.
- 4/ En déduire la conservation ou la non conservation de l'énergie mécanique. Justifier.
- 5/ Etablir le bilan des forces exercées sur la bille. Faire un schéma de la situation.